Affiliation:
1. Cryptology and Security Research Unit (CSRU), R. C. Bose Centre for Cryptology and Security, Indian Statistical Institute, Kolkata, West Bengal, India
Abstract
Hardy’s paradox (equivalently, Hardy’s non-locality or Hardy’s test) [Phys. Rev. Lett. 68, 2981 (1992)] is used to show non-locality without inequalities, and it has been tested several times using optical circuits. We, for the first time, experimentally test Hardy’s paradox of non-locality in superconducting qubits. For practical verification of Hardy’s paradox, we argue that the error-modeling used in optical circuits is not useful for superconducting qubits. So, we propose a new error-modeling for Hardy’s paradox and a new method to estimate the lower bound on Hardy’s probability (i.e., the probability of a specific event in Hardy’s test) for superconducting qubits. Our results confirmed the theory that any non-maximally entangled state of two qubits violates Hardy’s equations; whereas, any maximally entangled state and product state of two qubits do not exhibit Hardy’s non-locality. Further, we point out the difficulties associated with the practical implementation of quantum protocols based on Hardy’s paradox and propose possible remedies. We also propose two performance measures for any two qubits of any quantum computer based on superconducting qubits.
Publisher
Association for Computing Machinery (ACM)
Reference75 articles.
1. Quantum error correction decoheres noise;Beale Stefanie J.;Physical Review Letters,2018
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献