Browsix

Author:

Powers Bobby1,Vilk John1,Berger Emery D.1

Affiliation:

1. University of Massachusetts Amherst, Amherst, MA, USA

Abstract

Applications written to run on conventional operating systems typically depend on OS abstractions like processes, pipes, signals, sockets, and a shared file system. Porting these applications to the web currently requires extensive rewriting or hosting significant portions of code server-side because browsers present a nontraditional runtime environment that lacks OS functionality. This paper presents Browsix, a framework that bridges the considerable gap between conventional operating systems and the browser, enabling unmodified programs expecting a Unix-like environment to run directly in the browser. Browsix comprises two core parts: (1) a JavaScript-only system that makes core Unix features (including pipes, concurrent processes, signals, sockets, and a shared file system) available to web applications; and (2) extended JavaScript runtimes for C, C++, Go, and Node.js that support running programs written in these languages as processes in the browser. Browsix supports running a POSIX shell, making it straightforward to connect applications together via pipes. We illustrate Browsix's capabilities via case studies that demonstrate how it eases porting legacy applications to the browser and enables new functionality. We demonstrate a Browsix-enabled LaTeX editor that operates by executing unmodified versions of pdfLaTeX and BibTeX. This browser-only LaTeX editor can render documents in seconds, making it fast enough to be practical. We further demonstrate how Browsix lets us port a client-server application to run entirely in the browser for disconnected operation. Creating these applications required less than 50 lines of glue code and no code modifications, demonstrating how easily Browsix can be used to build sophisticated web applications from existing parts without modification.

Funder

National Science Foundation

Facebook Graduate Fellowship

Publisher

Association for Computing Machinery (ACM)

Reference16 articles.

1. The multikernel

2. Operating system benchmarking in the wake of lmbench

3. S. Doeraene. Scala.js: Type-Directed Interoperability with Dynamically Typed Languages. Technical report École polytechnique fédérale de Lausanne 2013. S. Doeraene. Scala.js: Type-Directed Interoperability with Dynamically Typed Languages. Technical report École polytechnique fédérale de Lausanne 2013.

4. M. Fogleman. fogleman/gg: Go Graphics - 2D rendering in Go with a simple API 2016. https://github.com/fogleman/gg. M. Fogleman. fogleman/gg: Go Graphics - 2D rendering in Go with a simple API 2016. https://github.com/fogleman/gg.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3