Efficient Address Translation for Architectures with Multiple Page Sizes

Author:

Cox Guilherme1,Bhattacharjee Abhishek1

Affiliation:

1. Rutgers University, Piscataway, NJ, USA

Abstract

Processors and operating systems (OSes) support multiple memory page sizes. Superpages increase Translation Lookaside Buffer (TLB) hits, while small pages provide fine-grained memory protection. Ideally, TLBs should perform well for any distribution of page sizes. In reality, set-associative TLBs -- used frequently for their energy efficiency compared to fully-associative TLBs -- cannot (easily) support multiple page sizes concurrently. Instead, commercial systems typically implement separate set-associative TLBs for different page sizes. This means that when superpages are allocated aggressively, TLB misses may, counter intuitively, increase even if entries for small pages remain unused (and vice-versa). We invent MIX TLBs, energy-frugal set-associative structures that concurrently support all page sizes by exploiting superpage allocation patterns. MIX TLBs boost the performance (often by 10-30%) of big-memory applications on native CPUs, virtualized CPUs, and GPUs. MIX TLBs are simple and require no OS or program changes.

Funder

Google

VMWare

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Athena;Proceedings of the International Conference on Parallel Architectures and Compilation Techniques;2022-10-08

2. Improving Address Translation in Multi-GPUs via Sharing and Spilling aware TLB Design;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

3. Morrigan: A Composite Instruction TLB Prefetcher;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

4. Trident: Harnessing Architectural Resources for All Page Sizes in x86 Processors;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3