Differentiable Rendering of Parametric Geometry

Author:

Worchel Markus1ORCID,Alexa Marc1ORCID

Affiliation:

1. TU Berlin, Germany

Abstract

We propose an efficient method for differentiable rendering of parametric surfaces and curves, which enables their use in inverse graphics problems. Our central observation is that a representative triangle mesh can be extracted from a continuous parametric object in a differentiable and efficient way. We derive differentiable meshing operators for surfaces and curves that provide varying levels of approximation granularity. With triangle mesh approximations, we can readily leverage existing machinery for differentiable mesh rendering to handle parametric geometry. Naively combining differentiable tessellation with inverse graphics settings lacks robustness and is prone to reaching undesirable local minima. To this end, we draw a connection between our setting and the optimization of triangle meshes in inverse graphics and present a set of optimization techniques, including regularizations and coarse-to-fine schemes. We show the viability and efficiency of our method in a set of image-based computer-aided design applications.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3Doodle: Compact Abstraction of Objects with 3D Strokes;ACM Transactions on Graphics;2024-07-19

2. Fabricable 3D Wire Art;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

3. Interior control structure for Generalized Bézier patches over curved domains;Computers & Graphics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3