Affiliation:
1. Institute of Intelligent Machines and University of Science and Technology of China, Hefei City, Anhui Province, China
2. Institute of Intelligent Machines
3. Institute of Intelligent Machines, Anhui Province, China
Abstract
Electronic medical records (EMRs) contain valuable information about the patients, such as clinical symptoms, diagnostic results, and medications. Named entity recognition (NER) aims to recognize entities from unstructured text, which is the initial step toward the semantic understanding of the EMRs. Extracting medical information from Chinese EMRs could be a more complicated task because of the difference between English and Chinese. Some researchers have noticed the importance of Chinese NER and used the recurrent neural network or convolutional neural network (CNN) to deal with this task. However, it is interesting to know whether the performance could be improved if the advantages of the RNN and CNN can be both utilized. Moreover, RoBERTa-WWM, as a pre-training model, can generate the embeddings with word-level features, which is more suitable for Chinese NER compared with Word2Vec. In this article, we propose a hybrid model. This model first obtains the entities identified by bidirectional long short-term memory and CNN, respectively, and then uses two hybrid strategies to output the final results relying on these entities. We also conduct experiments on raw medical records from real hospitals. This dataset is provided by the China Conference on Knowledge Graph and Semantic Computing in 2019 (CCKS 2019). Results demonstrate that the hybrid model can improve performance significantly.
Funder
Major Special Project of Anhui Science and Technology Department
Science and Technology Service Network Initiative
Publisher
Association for Computing Machinery (ACM)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献