Testing the Plasticity of Reinforcement Learning-based Systems

Author:

Biagiola Matteo1ORCID,Tonella Paolo1

Affiliation:

1. Università della Svizzera italiana, Lugano, Switzerland

Abstract

The dataset available for pre-release training of a machine-learning based system is often not representative of all possible execution contexts that the system will encounter in the field. Reinforcement Learning (RL) is a prominent approach among those that support continual learning, i.e., learning continually in the field, in the post-release phase. No study has so far investigated any method to test the plasticity of RL-based systems, i.e., their capability to adapt to an execution context that may deviate from the training one. We propose an approach to test the plasticity of RL-based systems. The output of our approach is a quantification of the adaptation and anti-regression capabilities of the system, obtained by computing the adaptation frontier of the system in a changed environment. We visualize such frontier as an adaptation/anti-regression heatmap in two dimensions, or as a clustered projection when more than two dimensions are involved. In this way, we provide developers with information on the amount of changes that can be accommodated by the continual learning component of the system, which is key to decide if online, in-the-field learning can be safely enabled or not.

Funder

H2020 project PRECRIME

ERC Advanced Grant 2017 Program

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boundary State Generation for Testing and Improvement of Autonomous Driving Systems;IEEE Transactions on Software Engineering;2024-08

2. MarMot: Metamorphic Runtime Monitoring of Autonomous Driving Systems;ACM Transactions on Software Engineering and Methodology;2024-07-15

3. Test Input Prioritization for 3D Point Clouds;ACM Transactions on Software Engineering and Methodology;2024-06-04

4. Towards Building AI-CPS with NVIDIA Isaac Sim: An Industrial Benchmark and Case Study for Robotics Manipulation;Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice;2024-04-14

5. Testing of Deep Reinforcement Learning Agents with Surrogate Models;ACM Transactions on Software Engineering and Methodology;2023-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3