Mansard Roofline Model: Reinforcing the Accuracy of the Roofs

Author:

Marques Diogo1,Ilic Aleksandar1,Sousa Leonel1

Affiliation:

1. INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract

Continuous enhancements and diversity in modern multi-core hardware, such as wider and deeper core pipelines and memory subsystems, bring to practice a set of hard-to-solve challenges when modeling their upper-bound capabilities and identifying the main application bottlenecks. Insightful roofline models are widely used for this purpose, but the existing approaches overly abstract the micro-architecture complexity, thus providing unrealistic performance bounds that lead to a misleading characterization of real-world applications. To address this problem, the Mansard Roofline Model (MaRM), proposed in this work, uncovers a minimum set of architectural features that must be considered to provide insightful, but yet accurate and realistic, modeling of performance upper bounds for modern processors. By encapsulating the retirement constraints due to the amount of retirement slots, Reorder-Buffer and Physical Register File sizes, the proposed model accurately models the capabilities of a real platform (average rRMSE of 5.4%) and characterizes 12 application kernels from standard benchmark suites. By following a herein proposed MaRM interpretation methodology and guidelines, speed-ups of up to 5× are obtained when optimizing real-world bioinformatic application, as well as a super-linear speedup of 18.5× when parallelized.

Funder

FCT

ERDF

EuroHPC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Media Technology,Information Systems,Software,Computer Science (miscellaneous)

Reference50 articles.

1. Y. Bao C. Bienia and K. Li. 2016. The PARSEC Benchmark Suite Tutorial. Princeton University. http://parsec.cs. princeton.edu/download/tutorial/3.0/parsec-tutorial.pdf. Y. Bao C. Bienia and K. Li. 2016. The PARSEC Benchmark Suite Tutorial. Princeton University. http://parsec.cs. princeton.edu/download/tutorial/3.0/parsec-tutorial.pdf.

2. Scott Beamer Krste Asanović and David Patterson. 2015. The GAP benchmark suite. CoRR abs/1508.03619. arXiv:1508.03619. http://arxiv.org/abs/1508.03619. Scott Beamer Krste Asanović and David Patterson. 2015. The GAP benchmark suite. CoRR abs/1508.03619. arXiv:1508.03619. http://arxiv.org/abs/1508.03619.

3. A parallel shared-memory implementation of a high-order accurate solution technique for variable coefficient Helmholtz problems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On‐demand JSON: A better way to parse documents?;Software: Practice and Experience;2024-01-18

2. How Much Storage Do We Need for High Performance Server;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3