A compositional approach for modeling and timing analysis of wireless sensor and actuator networks

Author:

Sirjani Marjan1,Khamespanah Ehsan2,Mechitov Kirill3,Agha Gul3

Affiliation:

1. Malardalen University, Västeras, Sweden and Reykjavik University, Reykjavik, Iceland

2. University of Tehran, Tehran, Iran and Reykjavik University, Reykjavik, Iceland

3. University of Illinois at Urbana-Champaign

Abstract

Wireless sensor and actuator networks (WSAN) are created through the integration of multiple nodes which acquire data and perform reaction based on them. In a general overview, sensor nodes of WSANs are responsible for data acquisition and sending them to a central node. The central node stores all the received data and performs reactions. Timing verification of WSAN applications to ensure schedulability of tasks is a challenge, and is generally performed by worst-case analysis. This process is error-prone and inherently conservative. On the other hand, using model checking for analyzing WSAN applications results in state space explosion even for middle-sized configurations. The reason is the necessity of considering the interleaving of the large number of sensors in WSANs. In this paper, we show how to build an actor-based model of WSAN applications, starting from sensor node-level and moving towards the full system, and we show how this compositional modeling improves analysability and modifiability. Realtime extension of actor model is appropriate for modeling WSAN applications where we have many concurrent and asynchronous processes, and interdependent realtime deadlines. We demonstrate the approach using a case study of a distributed realtime data acquisition system for high-frequency sensing, where Timed Rebeca is used for modeling. We use model checking to check the intra/inter-sensor node schedulability.

Publisher

Association for Computing Machinery (ACM)

Subject

Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Rebeca Formal Modeling Language. http://www.rebeca-lang.org/. Rebeca Formal Modeling Language. http://www.rebeca-lang.org/.

2. Lecture Notes in Computer Science;Amnell T.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3