Pseudo Relevance Feedback with Deep Language Models and Dense Retrievers: Successes and Pitfalls

Author:

Li Hang1ORCID,Mourad Ahmed1ORCID,Zhuang Shengyao1ORCID,Koopman Bevan2ORCID,Zuccon Guido1ORCID

Affiliation:

1. IElab, The University of Queensland, Queensland, Australia

2. Australian E-Health Research Centre, CSIRO, Queensland, Australia

Abstract

Pseudo Relevance Feedback (PRF) is known to improve the effectiveness of bag-of-words retrievers. At the same time, deep language models have been shown to outperform traditional bag-of-words rerankers. However, it is unclear how to integrate PRF directly with emergent deep language models. This article addresses this gap by investigating methods for integrating PRF signals with rerankers and dense retrievers based on deep language models. We consider text-based, vector-based and hybrid PRF approaches and investigate different ways of combining and scoring relevance signals. An extensive empirical evaluation was conducted across four different datasets and two task settings (retrieval and ranking). Text-based PRF results show that the use of PRF had a mixed effect on deep rerankers across different datasets. We found that the best effectiveness was achieved when (i) directly concatenating each PRF passage with the query, searching with the new set of queries, and then aggregating the scores; (ii) using Borda to aggregate scores from PRF runs. Vector-based PRF results show that the use of PRF enhanced the effectiveness of deep rerankers and dense retrievers over several evaluation metrics. We found that higher effectiveness was achieved when (i) the query retains either the majority or the same weight within the PRF mechanism, and (ii) a shallower PRF signal (i.e., a smaller number of top-ranked passages) was employed, rather than a deeper signal. Our vector-based PRF method is computationally efficient; thus, this represents a general PRF method others can use with deep rerankers and dense retrievers.

Funder

Grain Research and Development Corporation project AgAsk

Australian Research Council DECRA Research Fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning to Jointly Transform and Rank Difficult Queries;Lecture Notes in Computer Science;2024

2. GenQREnsemble: Zero-Shot LLM Ensemble Prompting for Generative Query Reformulation;Lecture Notes in Computer Science;2024

3. Augmenting Passage Representations with Query Generation for Enhanced Cross-Lingual Dense Retrieval;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3