Note on generalization in experimental algorithmics

Author:

Ramakrishnan Naren1,Valdés-Pérez Raúl E.2

Affiliation:

1. Virginia Polytechnic Institute and State Univ., Blacksburg

2. Carnegie Mellon Univ., Pittsburgh, PA

Abstract

A recurring theme in mathematical software evaluation is the generalization of rankings of algorithms on test problems to build knowledge-based recommender systems for algorithm selection. A key issue is to profile algorithms in terms of the qualitative characteristics of benchmark problems. In this methodological note, we adapt a novel all-pairs algorithm for the profiling task; given performance rankings for m algorithms on n problem instances, each described with p features, identify a (minimal) subset of p that is useful for assessing the selective superiority of an algorithm over another, for all pairs of m algorithms. We show how techniques presented in the mathematical software literature are inadequate for such profiling purposes. In conclusion, we also address various statistical issues underlying the effective application of this technique.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A machine learning approach to algorithm selection for $\mathcal{NP}$ -hard optimization problems: a case study on the MPE problem;Annals of Operations Research;2007-08-07

2. Statistical Models for Empirical Search-Based Performance Tuning;The International Journal of High Performance Computing Applications;2004-02

3. Programming environments for multidisciplinary Grid communities;Concurrency and Computation: Practice and Experience;2002-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3