Affiliation:
1. University of Pittsburgh, Benedum Hall, Pittsburgh, PA
2. University of Florida, Gainesville, Gainesville, FL
Abstract
Monolayer heterojunction FETs based on vertical heterogeneous transition metal dichalcogenides (TMDCFETs) and planar black phosphorus FETs (BPFETs) have demonstrated excellent subthreshold swing, high
I
ON
I
OFF
, and high scalability, making them attractive candidates for post-CMOS memory design. This article explores TMDCFET and BPFET SRAM design by combining atomistic self-consistent device modeling with SRAM circuit design and simulation. We perform detailed evaluations of the TMDCFET/BPFET SRAMs at a single bitcell and at SRAM array level. Our simulations show that at low operating voltages, TMDCFET/BPFET SRAMs exhibit significant advantages in static power, dynamic read/write noise margin, and read/write delay over nominal 16nm CMOS SRAMs at both bitcell and array-level implementations. We also analyze the effect of process variations on the performance of TMDCFET/BPFET SRAMs. Our simulations demonstrate that TMDCFET/BPFET SRAMs exhibit high tolerance to process variations, which is desirable for low operating voltages.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献