Deterministic sampling and range counting in geometric data streams

Author:

Bagchi Amitabha1,Chaudhary Amitabh2,Eppstein David3,Goodrich Michael T.3

Affiliation:

1. Indian Institute of Technology, Hauz Khas, New Delhi, India

2. Notre Dame University, Notre Dame, IN

3. University of California at Irvine, Irvine, CA

Abstract

We present memory-efficient deterministic algorithms for constructing ϵ-nets and ϵ-approximations of streams of geometric data. Unlike probabilistic approaches, these deterministic samples provide guaranteed bounds on their approximation factors. We show how our deterministic samples can be used to answer approximate online iceberg geometric queries on data streams. We use these techniques to approximate several robust statistics of geometric data streams, including Tukey depth, simplicial depth, regression depth, the Thiel-Sen estimator, and the least median of squares. Our algorithms use only a polylogarithmic amount of memory, provided the desired approximation factors are at least inverse-polylogarithmic. We also include a lower bound for noniceberg geometric queries.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference45 articles.

1. Agarwal P. K. Har-Peled S. and Varadarajan K. R. 2005. Geometric approximation via coresets. http://valis.cs.uiuc.edu/sariel/research/papers/. Agarwal P. K. Har-Peled S. and Varadarajan K. R. 2005. Geometric approximation via coresets. http://valis.cs.uiuc.edu/sariel/research/papers/.

2. Approximating extent measures of points

3. Regression Depth and Center Points

4. Models and issues in data stream systems

5. Deterministic sampling and range counting in geometric data streams

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Competitive Data-Structure Dynamization;ACM Transactions on Algorithms;2024-06-28

2. Approximating Aggregated SQL Queries with LSTM Networks;2021 International Joint Conference on Neural Networks (IJCNN);2021-07-18

3. Approximating Multidimensional Range Counts with Maximum Error Guarantees;2021 IEEE 37th International Conference on Data Engineering (ICDE);2021-04

4. The Adversarial Robustness of Sampling;Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2020-05-29

5. Approximate Query Processing;Proceedings of the 2017 ACM International Conference on Management of Data;2017-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3