Partial evaluation of functional logic programs

Author:

Alpuente María1,Falaschi Moreno2,Vidal Germán1

Affiliation:

1. Univ. Politécnica de Valencia, Valencia, Spain

2. Univ. di Udine, Udinve, Italy

Abstract

Languages that integrate functional and logic programming with a complete operational semantics are based on narrowing, a unification-based goal-solving mechanism which subsumes the reduction principle of functional languages and the resolution principle of logic languages. In this article, we present a partial evaluation scheme for functional logic languages based on an automatic unfolding algorithm which builds narrowing trees. The method is formalized within the theoretical framework established by Lloyd and Shepherdson for the partial deduction of logic programs, which we have generalized for dealing with functional computations. A generic specialization algorithm is proposed which does not depend on the eager or lazy nature of the narrower being used. To the best of our knowledge, this is the first generic algorithm for the specialization of functional logic programs. We also discuss the relation to work on partial evaluation in functional programming, term-rewriting systems, and logic programming. Finally, we present some experimental results with an implementation of the algorithm which show in practice that the narrowing-driven partial evaluator effectively combines the propagation of partial data structures (by means of logical variables and unification) with better opportunities for optimization (thanks to the functional dimension).

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Maude Programs via Program Specialization;Analysis, Verification and Transformation for Declarative Programming and Intelligent Systems;2023

2. Symbolic Specialization of Rewriting Logic Theories with Presto;Theory and Practice of Logic Programming;2022-02-11

3. Equational Unification and Matching, and Symbolic Reachability Analysis in Maude 3.2 (System Description);Automated Reasoning;2022

4. Optimization of rewrite theories by equational partial evaluation;Journal of Logical and Algebraic Methods in Programming;2022-01

5. Order-sorted Homeomorphic Embedding Modulo Combinations of Associativity and/or Commutativity Axioms*;Fundamenta Informaticae;2020-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3