TensorBeat

Author:

Wang Xuyu1,Yang Chao1,Mao Shiwen1ORCID

Affiliation:

1. Auburn University, Auburn, AL

Abstract

Breathing signal monitoring can provide important clues for health problems. Compared to existing techniques that require wearable devices and special equipment, a more desirable approach is to provide contact-free and long-term breathing rate monitoring by exploiting wireless signals. In this article, we propose TensorBeat, a system to employ channel state information (CSI) phase difference data to intelligently estimate breathing rates for multiple persons with commodity WiFi devices. The main idea is to leverage the tensor decomposition technique to handle the CSI phase difference data. The proposed TensorBeat scheme first obtains CSI phase difference data between pairs of antennas at the WiFi receiver to create CSI tensors. Then canonical polyadic (CP) decomposition is applied to obtain the desired breathing signals. A stable signal matching algorithm is developed to identify the decomposed signal pairs, and a peak detection method is applied to estimate the breathing rates for multiple persons. Our experimental study shows that TensorBeat can achieve high accuracy under different environments for multiperson breathing rate monitoring.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Preprocessing of WiFi CSI for Sensing Applications;IEEE Transactions on Wireless Communications;2024-09

2. GrainSense: A Wireless Grain Moisture Sensing System Based on Wi-Fi Signals;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-08-22

3. Robust WiFi Respiration Sensing in the Presence of Interfering Individual;IEEE Transactions on Mobile Computing;2024-08

4. WiResP: A Robust Wi-Fi-Based Respiration Monitoring via Spectrum Enhancement;IEEE Sensors Journal;2024-07-01

5. Change-point detection using diffusion maps for sleep apnea monitoring with contact-free sensors;PLOS ONE;2024-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3