Traffic phase effects in packet-switched gateways

Author:

Floyd Sally,Jacobson Van

Abstract

Much of the traffic in existing packet networks is highly periodic, either because of periodic sources (e.g., real time speech or video, rate control) or because window flow control protocols have a periodic cycle equal to the connection roundtrip time (e.g., a network-bandwidth limited TCP bulk data transfer). Control theory suggests that this periodicity can resonate (i.e., have a strong, non-linear interaction) with deterministic estimation or control algorithms in network gateways. 1 In this paper we define the notion of traffic phase in a packet-switched network and describe how phase differences between competing traffic streams can be the dominant factor in relative throughput. Drop Tail gateways in a TCP/IP network with strongly periodic traffic can result in systematic discrimination against some connections. We demonstrate this behavior with both simulations and theoretical analysis. This discrimination can be eliminated with the addition of appropriate randomization to the network. In particular, analysis suggests that simply coding a gateway to drop a random packet from its queue (rather than the tail) on overflow is often sufficient.We do not claim that Random Drop gateways solve all of the problems of Drop Tail gateways. Biases against bursty traffic and long roundtrip time connections are shared by both Drop Tail and Random Drop gateways. Correcting the bursty traffic bias has led us to investigate a different kind of randomized gateway algorithm that operates on the traffic stream, rather than on the queue. Preliminary results show that the Random Early Detection gateway, a newly developed gateway congestion avoidance algorithm, corrects this bias against bursty traffic. The roundtrip time bias (at least in TCP/IP networks) results from the TCP window increase algorithm, not from the gateway dropping policy, and we briefly discuss changes to the window increase algorithm that could eliminate this bias.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference14 articles.

1. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks

2. Analysis and Simulation of a Fair Queueing Algorithm;Demers A.;Internetworking: Research and Experience,1990

3. {FJ91} Floyd S. and Jacobson V. On Traffic Phase Effects in Packet-Switched Gateways in preparation. {FJ91} Floyd S. and Jacobson V. On Traffic Phase Effects in Packet-Switched Gateways in preparation.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects on random early detection of the packet drop probability function with an adjustable nonlinearity;Nonlinear Theory and Its Applications, IEICE;2023

2. Towards timeout-less transport in commodity datacenter networks;Proceedings of the Sixteenth European Conference on Computer Systems;2021-04-21

3. Re-architecting datacenter networks and stacks for low latency and high performance;Proceedings of the Conference of the ACM Special Interest Group on Data Communication;2017-08-07

4. On fairness and application performance of active queue management in broadband cable networks;Computer Networks;2015-11

5. On Optimal Magnitude of Fluctuations in Probe Packet Arrival Intervals;IEICE Transactions on Communications;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3