Learning Generalizable and Identity-Discriminative Representations for Face Anti-Spoofing

Author:

Tu Xiaoguang1ORCID,Ma Zheng1,Zhao Jian2,Du Guodong3,Xie Mei1,Feng Jiashi3

Affiliation:

1. University of Electronic Science and Technology of China, Chengdu, China

2. Institute of North Electronic Equipment, Beijing, China

3. National University of Singapore, Singapore

Abstract

Face anti-spoofing aims to detect presentation attack to face recognition--based authentication systems. It has drawn growing attention due to the high security demand. The widely adopted CNN-based methods usually well recognize the spoofing faces when training and testing spoofing samples display similar patterns, but their performance would drop drastically on testing spoofing faces of novel patterns or unseen scenes, leading to poor generalization performance. Furthermore, almost all current methods treat face anti-spoofing as a prior step to face recognition, which prolongs the response time and makes face authentication inefficient. In this article, we try to boost the generalizability and applicability of face anti-spoofing methods by designing a new generalizable face authentication CNN (GFA-CNN) model with three novelties. First, GFA-CNN introduces a simple yet effective total pairwise confusion loss for CNN training that properly balances contributions of all spoofing patterns for recognizing the spoofing faces. Second, it incorporate a fast domain adaptation component to alleviate negative effects brought by domain variation. Third, it deploys filter diversification learning to make the learned representations more adaptable to new scenes. In addition, the proposed GFA-CNN works in a multi-task manner—it performs face anti-spoofing and face recognition simultaneously. Experimental results on five popular face anti-spoofing and face recognition benchmarks show that GFA-CNN outperforms previous face anti-spoofing methods on cross-test protocols significantly and also well preserves the identity information of input face images.

Funder

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference47 articles.

1. A competition on generalized software-based face presentation attack detection in mobile scenarios

2. Face anti-spoofing based on color texture analysis

3. Face Spoofing Detection Using Colour Texture Analysis

4. Face antispoofing using speeded-up robust features and fisher vector encoding;Boulkenafet Zinelabidine;IEEE Signal Processing Letters,2017

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3