A New Smooth Approximation to the Zero One Loss with a Probabilistic Interpretation

Author:

Hasan Md Kamrul1,Pal Christopher2

Affiliation:

1. École Polytechnique Montréal, QC, Canada

2. Mila, École Polytechnique Montréal, QC, Canada

Abstract

We examine a new form of smooth approximation to the zero one loss in which learning is performed using a reformulation of the widely used logistic function. Our approach is based on using the posterior mean of a novel generalized Beta-Bernoulli formulation. This leads to a generalized logistic function that approximates the zero one loss, but retains a probabilistic formulation conferring a number of useful properties. The approach is easily generalized to kernel logistic regression and easily integrated into methods for structured prediction. We present experiments in which we learn such models using an optimization method consisting of a combination of gradient descent and coordinate descent using localized grid search so as to escape from local minima. Our experiments indicate that optimization quality is improved when learning metaparameters are themselves optimized using a validation set. Our experiments show improved performance relative to widely used logistic and hinge loss methods on a wide variety of problems ranging from standard UC Irvine and libSVM evaluation datasets to product review predictions and a visual information extraction task. We observe that the approach is as follows: (1) more robust to outliers compared to the logistic and hinge losses; (2) outperforms comparable logistic and max margin models on larger scale benchmark problems; (3) when combined with Gaussian–Laplacian mixture prior on parameters the kernelized version of our formulation yields sparser solutions than Support Vector Machine classifiers; and (4) when integrated into a probabilistic structured prediction technique our approach provides more accurate probabilities yielding improved inference and increasing information extraction performance.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference36 articles.

1. K. Bache and M. Lichman. 2013. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml. K. Bache and M. Lichman. 2013. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml.

2. Trading convexity for scalability

3. Similarity Constraints-Based Structured Output Regression Machine: An Approach to Image Super-Resolution

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EXACT: How to train your accuracy;Pattern Recognition Letters;2024-09

2. Bibliography;Machine Learning with Noisy Labels;2024

3. Theoretical aspects of noisy-label learning;Machine Learning with Noisy Labels;2024

4. A nonlinear sparse neural ordinary differential equation model for multiple functional processes;Canadian Journal of Statistics;2021-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3