Abstract
Example-based texture synthesis has been an active research problem for over two decades. Still, synthesizing textures with nonlocal structures remains a challenge. In this article, we present a texture synthesis technique that builds upon convolutional neural networks and extracted statistics of pretrained deep features. We introduce a structural energy, based on correlations among deep features, which capture the self-similarities and regularities characterizing the texture. Specifically, we show that our technique can synthesize textures that have structures of various scales, local and nonlocal, and the combination of the two.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献