Periodicity and unbordered words

Author:

Harju Tero1,Nowotka Dirk2

Affiliation:

1. University of Turku, Turku, Finland

2. University of Stuttgart, Stuttgart, Germany

Abstract

The relationship between the length of a word and the maximum length of its unbordered factors is investigated in this article. Consider a finite word w of length n . We call a word bordered if it has a proper prefix, which is also a suffix of that word. Let μ( w ) denote the maximum length of all unbordered factors of w , and let ∂( w ) denote the period of w . Clearly, μ( w ) ≤ ∂( w ). We establish that μ( w ) = ∂( w ), if w has an unbordered prefix of length μ( w ) and n ≥ 2μ( w ) − 1. This bound is tight and solves the stronger version of an old conjecture by Duval [1983]. It follows from this result that, in general, n ≥ 3μ( w ) − 3 implies μ( w ) = ∂( w ), which gives an improved bound for the question raised by Ehrenfeucht and Silberger in 1979.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference25 articles.

1. Une carácterisation des mots périodiques;Assous R.;Disc. Math.,1979

2. A fast string searching algorithm

3. Rotations of Periodic Strings and Short Superstrings

4. Bylanski P. and Ingram D. G. W. 1980. Digital transmission systems. IEE. Bylanski P. and Ingram D. G. W. 1980. Digital transmission systems. IEE.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximal unbordered factors of random strings;Theoretical Computer Science;2021-01

2. The Shortest Possible Return Time of $\beta$ -Mixing Processes;IEEE Transactions on Information Theory;2018-07

3. Fully bordered words;Theoretical Computer Science;2017-07

4. Abelian bordered factors and periodicity;European Journal of Combinatorics;2016-01

5. Maximal Unbordered Factors of Random Strings;String Processing and Information Retrieval;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3