Low-Rank Gradient Descent for Memory-Efficient Training of Deep In-Memory Arrays

Author:

Huang Siyuan1ORCID,Hoskins Brian D.2ORCID,Daniels Matthew W.2ORCID,Stiles Mark D.2ORCID,Adam Gina C.1ORCID

Affiliation:

1. George Washington University

2. National Institute of Standards and Technology

Abstract

The movement of large quantities of data during the training of a deep neural network presents immense challenges for machine learning workloads, especially those based on future functional memories deployed to store network models. As the size of network models begins to vastly outstrip traditional silicon computing resources, functional memories based on flash, resistive switches, magnetic tunnel junctions, and other technologies can store these new ultra-large models. However, new approaches are then needed to minimize hardware overhead, especially on the movement and calculation of gradient information that cannot be efficiently contained in these new memory resources. To do this, we introduce streaming batch principal component analysis (SBPCA) as an update algorithm. Streaming batch principal component analysis uses stochastic power iterations to generate a stochastic rank- k approximation of the network gradient. We demonstrate that the low-rank updates produced by streaming batch principal component analysis can effectively train convolutional neural networks on a variety of common datasets, with performance comparable to standard mini-batch gradient descent. Our approximation is made in an expanded vector form that can efficiently be applied to the rows and columns of crossbars for array-level updates. These results promise improvements in the design of application-specific integrated circuits based around large vector-matrix multiplier memories.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3