Fast incremental maintenance of approximate histograms

Author:

Gibbons Phillip B.1,Matias Yossi2,Poosala Viswanath3

Affiliation:

1. Intel Research Pittsburgh, Pittsburgh, PA

2. Tel Aviv University, Tel Aviv, Israel

3. Bell Laboratories, Murray Hill, NJ

Abstract

Many commercial database systems maintain histograms to summarize the contents of large relations and permit efficient estimation of query result sizes for use in query optimizers. Delaying the propagation of database updates to the histogram often introduces errors into the estimation. This article presents new sampling-based approaches for incremental maintenance of approximate histograms. By scheduling updates to the histogram based on the updates to the database, our techniques are the first to maintain histograms effectively up to date at all times and avoid computing overheads when unnecessary. Our techniques provide highly accurate approximate histograms belonging to the equidepth and Compressed classes. Experimental results show that our new approaches provide orders of magnitude more accurate estimation than previous approaches.An important aspect employed by these new approaches is a backing sample , an up-to-date random sample of the tuples currently in a relation. We provide efficient solutions for maintaining a uniformly random sample of a relation in the presence of updates to the relation. The backing sample techniques can be used for any other application that relies on random samples of data.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. JanusAQP: Efficient Partition Tree Maintenance for Dynamic Approximate Query Processing;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

2. White Box: On the Prediction of Collaborative Filtering Recommendation Systems’ Performance;ACM Transactions on Internet Technology;2023-02-23

3. Assessment of Data Quality Through Multi-granularity Data Profiling;Advances in Databases and Information Systems;2023

4. Review of the k-Vector and Its Relation to Classical Data Structures;Journal of Guidance, Control, and Dynamics;2022-11

5. LDI: Learned Distribution Index for Column Stores;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3