Efficient Maximum k-Defective Clique Computation with Improved Time Complexity

Author:

Chang Lijun1ORCID

Affiliation:

1. The University of Sydney, Sydney, NSW, Australia

Abstract

k-defective cliques relax cliques by allowing up-to k missing edges from being a complete graph. This relaxation enables us to find larger near-cliques and has applications in link prediction, cluster detection, social network analysis and transportation science. The problem of finding the largest k-defective clique has been recently studied with several algorithms being proposed in the literature. However, the currently fastest algorithm KDBB does not improve its time complexity from being the trivial O(2n), and also, KDBB's practical performance is still not satisfactory. In this paper, we advance the state of the art for exact maximum k-defective clique computation, in terms of both time complexity and practical performance. Moreover, we separate the techniques required for achieving the time complexity from others purely used for practical performance consideration; this design choice may facilitate the research community to further improve the practical efficiency while not sacrificing the worst case time complexity. In specific, we first develop a general framework kDC that beats the trivial time complexity of O(2n) and achieves a better time complexity than all existing algorithms. The time complexity of kDC is solely achieved by our newly designed non-fully-adjacent-first branching rule, excess-removal reduction rule and high-degree reduction rule. Then, to make kDC practically efficient, we further propose a new upper bound, two new reduction rules, and an algorithm for efficiently computing a large initial solution. Extensive empirical studies on three benchmark graph collections with 290 graphs in total demonstrate that kDC outperforms the currently fastest algorithm KDBB by several orders of magnitude.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3