Annotating Data for Fine-Tuning a Neural Ranker? Current Active Learning Strategies are not Better than Random Selection

Author:

Althammer Sophia1ORCID,Zuccon Guido2ORCID,Hofstätter Sebastian3ORCID,Verberne Suzan4ORCID,Hanbury Allan5ORCID

Affiliation:

1. Information System Engineering, TU Wien, Austria

2. ITEE, The University of Queensland, Australia

3. Cohere, Austria

4. LIACS, Leiden University, Netherlands

5. TU Wien, Austria

Funder

EU Horizon 2020 ITN/ETN

Publisher

ACM

Reference72 articles.

1. TripJudge

2. Jordan  T Ash , Chicheng Zhang , Akshay Krishnamurthy , John Langford , and Alekh Agarwal . 2019. Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671 ( 2019 ). Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. 2019. Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671 (2019).

3. Payal Bajaj , Daniel Campos , Nick Craswell , Li Deng , Jianfeng Gao , Xiaodong Liu , Rangan Majumder , Andrew Mcnamara , Bhaskar Mitra , and Tri Nguyen . 2016 . MS MARCO : A Human Generated MAchine Reading COmprehension Dataset . In Proc. of NIPS. Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew Mcnamara, Bhaskar Mitra, and Tri Nguyen. 2016. MS MARCO : A Human Generated MAchine Reading COmprehension Dataset. In Proc. of NIPS.

4. Christopher  JC Burges . 2010. From ranknet to lambdarank to lambdamart: An overview. MSR- T ech Report ( 2010 ). Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An overview. MSR-Tech Report (2010).

5. Relevant knowledge helps in choosing right teacher

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling Laws For Dense Retrieval;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Simple Domain Adaptation for Sparse Retrievers;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3