Low-pain, high-gain multicore programming in Haskell

Author:

Al Zain Abdallah Deeb I.,Hammond Kevin,Berthold Jost,Trinder Phil,Michaelson Greg,Aswad Mustafa

Abstract

With the emergence of commodity multicore architectures, exploiting tightly-coupled parallelism has become increasingly important. Functional programming languages, such as Haskell, are, in principle, well placed to take advantage of this trend, offering the ability to easily identify large amounts of fine-grained parallelism. Unfortunately, obtaining real performance benefits has often proved hard to realise in practice. This paper reports on a new approach using middleware that has been constructed using the Eden parallel dialect of Haskell. Our approach is "low pain" in the sense that the programmer constructs a parallel program by inserting a small number of higher-order algorithmic skeletons at key points in the program. It is "high gain" in the sense that we are able to get good parallel speedups. Our approach is unusual in that we do not attempt to use shared memory directly, but rather coordinate parallel computations using a message-passing implementation. This approach has a number of advantages. Firstly, coordination, i.e. locking and communication, is both confined to limited shared memory areas, essentially the communication buffers, and is also isolated within well-understood libraries. Secondly, the coarse thread granularity that we obtain reduces coordination overheads, so locks are normally needed only on (relatively large) messages, and not on individual data items, as is often the case for simple shared-memory implementations. Finally, cache coherency requirements are reduced since individual tasks do not share caches, and can garbage collect independently. We report results for two representative computational algebra problems. Computational algebra is a challenging application area that has not been widely studied in the general parallelism community. Computational algebra applications have high computational demands, and are, in principle, often suitable for parallel execution, but usually display a high degree of irregularity in terms of both task and data structure. This makes it difficult to construct parallel applications that perform well in practice. Using our system, we are able to obtain both extremely good processor utilisation (97%) and very good absolute speedups (up to 7.7) on an eight-core machine.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliable scalable symbolic computation: The design of SymGridPar2;Computer Languages, Systems & Structures;2014-04

2. Multi-core Code in a Cluster – A Meaningful Option?;Advances in Grid and Pervasive Computing;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3