On computing all abductive explanations from a propositional Horn theory

Author:

Eiter Thomas1,Makino Kazuhisa2

Affiliation:

1. Vienna University of Technology, Wien, Austria

2. University of Tokyo, Tokyo, Japan

Abstract

Abduction is a fundamental mode of reasoning with applications in many areas of AI and Computer Science. The computation of abductive explanations is an important computational problem, which is at the core of early systems such as the ATMS and Clause Management Systems and is intimately related to prime implicate generation in propositional logic. Many algorithms have been devised for computing some abductive explanation, and the complexity of the problem has been well studied. However, little attention has been paid to the problem of computing multiple explanations, and in particular all explanations for an abductive query. We fill this gap and consider the computation of all explanations of an abductive query from a propositional Horn theory, or of a polynomial subset of them. Our study pays particular attention to the form of the query, ranging from a literal to a compound formula, to whether explanations are based on a set of abducible literals and to the representation of the Horn theory, either by a Horn conjunctive normal form (CNF) or model-based in terms of its characteristic models. For these combinations, we present either tractability results in terms of polynomial total-time algorithms, intractability results in terms of nonexistence of such algorithms (unless P = NP), or semi-tractability results in terms of solvability in quasi-polynomial time, established by polynomial-time equivalence to the problem of dualizing a monotone CNF expression. Our results complement previous results in the literature, and refute a longstanding conjecture by Selman and Levesque. They elucidate the complexity of generating all abductive explanations and shed light on related problems such as generating sets of restricted prime implicates of a Horn theory. The algorithms for tractable cases can be readily applied for generating a polynomial subset of explanations in polynomial time.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing Abductive Explanations;IEEE Intelligent Systems;2022-11-01

2. Unique key Horn functions;Theoretical Computer Science;2022-06

3. Generating combinations on the GPU and its application to the k-subset sum;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2021-07-07

4. Tackling the Subset Sum Problem with Fixed Size using an Integer Representation Scheme;2021 IEEE Congress on Evolutionary Computation (CEC);2021-06-28

5. Unranking Combinations Using Gradient-Based Optimization;2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI);2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3