Affiliation:
1. China Academy of Electronics and Information Technology of CETC, Beijing, China
2. Beijing Institute of Technology, Beijing, China
Abstract
For guiding natural language generation, many semantic-driven methods have been proposed. While clearly improving the performance of the end-to-end training task, these existing semantic-driven methods still have clear limitations: for example, (i) they only utilize shallow semantic signals (e.g., from topic models) with only a single stochastic hidden layer in their data generation process, which suffer easily from noise (especially adapted for short-text etc.) and lack of interpretation; (ii) they ignore the sentence order and document context, as they treat each document as a bag of sentences, and fail to capture the long-distance dependencies and global semantic meaning of a document. To overcome these problems, we propose a novel semantic-driven language modeling framework, which is a method to learn a Hierarchical Language Model and a Recurrent Conceptualization-enhanced Gamma Belief Network, simultaneously. For scalable inference, we develop the auto-encoding Variational Recurrent Inference, allowing efficient end-to-end training and simultaneously capturing global semantics from a text corpus. Especially, this article introduces concept information derived from high-quality lexical knowledge graph Probase, which leverages strong interpretability and anti-nose capability for the proposed model. Moreover, the proposed model captures not only intra-sentence word dependencies, but also temporal transitions between sentences and inter-sentence concept dependence. Experiments conducted on several NLP tasks validate the superiority of the proposed approach, which could effectively infer meaningful hierarchical concept structure of document and hierarchical multi-scale structures of sequences, even compared with latest state-of-the-art Transformer-based models.
Funder
National Natural Science Foundation of China
New Generation of Artificial Intelligence Special Action Project
National Key Research and Development Project
National Integrated Big Data Center Pilot Project
Joint Advanced Research Foundation of China Electronics Technology Group Corporation
Publisher
Association for Computing Machinery (ACM)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献