The state of the art in distributed query processing

Author:

Kossmann Donald1

Affiliation:

1. Univ. of Passau, Passau, Germany

Abstract

Distributed data processing is becoming a reality. Businesses want to do it for many reasons, and they often must do it in order to stay competitive. While much of the infrastructure for distributed data processing is already there (e.g., modern network technology), a number of issues make distributed data processing still a complex undertaking: (1) distributed systems can become very large, involving thousands of heterogeneous sites including PCs and mainframe server machines; (2) the state of a distributed system changes rapidly because the load of sites varies over time and new sites are added to the system; (3) legacy systems need to be integrated—such legacy systems usually have not been designed for distributed data processing and now need to interact with other (modern) systems in a distributed environment. This paper presents the state of the art of query processing for distributed database and information systems. The paper presents the “textbook” architecture for distributed query processing and a series of techniques that are particularly useful for distributed database systems. These techniques include special join techniques, techniques to exploit intraquery paralleli sm, techniques to reduce communication costs, and techniques to exploit caching and replication of data. Furthermore, the paper discusses different kinds of distributed systems such as client-server, middleware (multitier), and heterogeneous database systems, and shows how query processing works in these systems.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference160 articles.

1. ABITEBOUL S. BUNEMAN P. AND SUCIU D. 1999. Data on the Web from Relations to Semistructured Data and XML. MORKAU MKADDR.]] ABITEBOUL S. BUNEMAN P. AND SUCIU D. 1999. Data on the Web from Relations to Semistructured Data and XML. MORKAU MKADDR.]]

Cited by 392 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random Data Distribution for Efficient Parallel Point Cloud Processing;AGILE: GIScience Series;2024-05-30

2. AlterEgo;Proceedings of the 7th International Workshop on Edge Systems, Analytics and Networking;2024-04-22

3. Optimal Query Plans for Geo-distributed Data Analytics at Scale;Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD);2024-01-04

4. Nutzung des Gesundheitssystems mit naturinspirierten Computertechniken: Ein Überblick und zukünftige Perspektiven;Von der Natur inspirierte intelligente Datenverarbeitungstechniken in der Bioinformatik;2024

5. Die NoSQL-Toolbox: Die NoSQL-Landschaft im Überblick;Schnelles und skalierbares Cloud-Datenmanagement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3