IONavi

Author:

Teng Xiaoqiang1,Guo Deke2,Guo Yulan1,Zhou Xiaolei1,Ding Zeliu3,Liu Zhong1

Affiliation:

1. National University of Defense Technology, Hunan, P. R. China

2. Tianjin University, Tianjin, P. R. China

3. Naval University of Engineering, Hubei, P. R. China

Abstract

The proliferation of mobile computing has prompted navigation to be one of the most attractive and promising applications. Conventional designs of navigation systems mainly focus on either indoor or outdoor navigation. However, people have a strong need for navigation from a large open indoor environment to an outdoor destination in real life. This article presents IONavi, a joint navigation solution, which can enable passengers to easily deploy indoor-outdoor navigation service for subway transportation systems in a crowdsourcing way. Any self-motivated passenger records and shares individual walking traces from a location inside a subway station to an uncertain outdoor destination within a given range, such as one kilometer. IONavi further extracts navigation traces from shared individual traces, each of which is not necessary to be accurate. A subsequent following user achieves indoor-outdoor navigation services by tracking a recommended navigation trace. Extensive experiments are conducted on a subway transportation system. The experimental results indicate that IONavi exhibits outstanding navigation performance from an uncertain location inside a subway station to an outdoor destination. Although IONavi is to enable indoor-outdoor navigation for subway transportation systems, the basic idea can naturally be extended to joint navigation from other open indoor environments to outdoor environments.

Funder

Preliminary Research Funding of National University of Defense Technology

National Natural Science Foundation of China

Program for New Century Excellent Talents in University and Distinguished Young Scholars of National University of Defense Technology

National Postdoctoral Program for Innovative Talents

National Natural Science Foundation for Outstanding Excellent young scholars of China

National Basic Research Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3