How the Presence and Size of Static Peripheral Blur Affects Cybersickness in Virtual Reality

Author:

Lin Yun-Xuan1,Venkatakrishnan Rohith1,Venkatakrishnan Roshan2,Ebrahimi Elham3,Lin Wen-Chieh4ORCID,Babu Sabarish V.2

Affiliation:

1. National Chiao Tung University (Taiwan) and Clemson University (USA)

2. Clemson University, USA

3. University of North Carolina Wilmington, USA

4. National Chiao Tung University, Taiwan

Abstract

Cybersickness (CS) is one of the challenges that has hindered the widespread adoption of Virtual Reality and its applications. Consequently, a number of studies have focused on extensively understanding and reducing CS. Inspired by previous work that has sought to reduce CS using foveated rendering and Field of View (FOV) restrictions, we investigated how the presence and size of a static central window in peripheral FOV blurring affects CS. To facilitate this peripheral FOV blur, we applied a Gaussian blur effect in the display peripheral region, provisioning a full-resolution central window. Thirty participants took part in a three-session, within-subjects experiment, performing search and spatial updating tasks in a first-person, slow-walking, maze-traveling scenario. Two different central window sizes (small and large) were tested against a baseline condition that didn’t feature display peripheral blurring. Results revealed that the baseline condition produced higher levels of CS than both conditions with a central window. While there were no significant differences between the small and large windows, we observed interaction effects suggesting an influence of window size on “adaptation to CS.” When the central window is small, adaptation to CS seems to take more time but is more pronounced. The interventions had no effect on spatial updating and presence, but were detectable when the blurred area was larger (small central window). Lower sickness levels observed in both window conditions supports the use of peripheral FOV blurring to reduce CS, reducing our dependence on eye tracking. This being said, researchers must strive to find the right balance between window size and detectability to ensure seamless virtual experiences.

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3