Adversarial Energy Disaggregation

Author:

Du Zhekai1,Li Jingjing1,Zhu Lei2,Lu Ke1,Shen Heng Tao1

Affiliation:

1. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China

2. School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China

Abstract

Energy disaggregation, also known as non-intrusive load monitoring (NILM), challenges the problem of separating the whole-home electricity usage into appliance-specific individual consumptions, which is a typical application of data analysis. NILM aims to help households understand how the energy is used and consequently tell them how to effectively manage the energy, thus allowing energy efficiency, which is considered as one of the twin pillars of sustainable energy policy (i.e., energy efficiency and renewable energy). Although NILM is unidentifiable, it is widely believed that the NILM problem can be addressed by data science. Most of the existing approaches address the energy disaggregation problem by conventional techniques such as sparse coding, non-negative matrix factorization, and the hidden Markov model. Recent advances reveal that deep neural networks (DNNs) can get favorable performance for NILM since DNNs can inherently learn the discriminative signatures of the different appliances. In this article, we propose a novel method named adversarial energy disaggregation based on DNNs. We introduce the idea of adversarial learning into NILM, which is new for the energy disaggregation task. Our method trains a generator and multiple discriminators via an adversarial fashion. The proposed method not only learns shared representations for different appliances but captures the specific multimode structures of each appliance. Extensive experiments on real-world datasets verify that our method can achieve new state-of-the-art performance.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

Association for Computing Machinery (ACM)

Reference41 articles.

1. Enhancing neural non-intrusive load monitoring with generative adversarial networks;Bao Kaibin;Energy Informatics,2018

2. NILMTK

3. Towards reproducible state-of-the-art energy disaggregation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adversarial Domain Adaptation for Non-Intrusive LOAD Monitoring;2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP);2023-12-15

2. Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?;Energies;2023-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3