On the Value of Head Labels in Multi-Label Text Classification

Author:

Wang Haobo1ORCID,Peng Cheng2ORCID,Dong Hede2ORCID,Feng Lei3ORCID,Liu Weiwei4ORCID,Hu Tianlei2ORCID,Chen Ke2ORCID,Chen Gang2ORCID

Affiliation:

1. School of Software Technology, Zhejiang University, Hangzhou, China

2. The State Key Laboratory of Blockchain and Data Security, Zhejiang University, Hangzhou, China

3. School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore

4. School of Computer Science, Wuhan University, Wuhan, China

Abstract

A formidable challenge in the multi-label text classification (MLTC) context is that the labels often exhibit a long-tailed distribution, which typically prevents deep MLTC models from obtaining satisfactory performance. To alleviate this problem, most existing solutions attempt to improve tail performance by means of sampling or introducing extra knowledge. Data-rich labels, though more trustworthy, have not received the attention they deserve. In this work, we propose a multiple-stage training framework to exploit both model- and feature-level knowledge from the head labels, to improve both the representation and generalization ability of MLTC models. Moreover, we theoretically prove the superiority of our framework design over other alternatives. Comprehensive experiments on widely used MLTC datasets clearly demonstrate that the proposed framework achieves highly superior results to state-of-the-art methods, highlighting the value of head labels in MLTC.

Funder

Pioneer R&D Program of Zhejiang

Publisher

Association for Computing Machinery (ACM)

Reference46 articles.

1. Predicting judicial decisions of the European Court of Human Rights: a Natural Language Processing perspective

2. Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. 2019. A convergence theory for deep learning via over-parameterization. In Proceedings of the ICML. Vol. 97, PMLR, 242–252.

3. DiSMEC

4. Data scarcity, robustness and extreme multi-label classification

5. K. Bhatia K. Dahiya H. Jain A. Mittal Y. Prabhu and M. Varma. 2016. The extreme classification repository: Multi-label datasets and code. Retrieved from http://manikvarma.org/downloads/XC/XMLRepository.html. Accessed 1-1-2024.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3