FairGAN: GANs-based Fairness-aware Learning for Recommendations with Implicit Feedback

Author:

Li Jie1,Ren Yongli1,Deng Ke1

Affiliation:

1. School of Computing Technologies, Royal Melbourne Institute of Technology University, Australia

Funder

Australian Research Council

Publisher

ACM

Reference52 articles.

1. Xiangnan 2, Kuan Deng , Xiang Wang , Yan Li , Yongdong Zhang , and Meng Wang . 2020 . Lightgcn: Simplifying and powering graph convolution network for recommendation . In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. 639–648 . Xiangnan 2, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. 639–648.

2. Himan Abdollahpouri and Masoud Mansoury. 2020. Multi-sided exposure bias in recommendation. arXiv preprint arXiv:2006.15772(2020). Himan Abdollahpouri and Masoud Mansoury. 2020. Multi-sided exposure bias in recommendation. arXiv preprint arXiv:2006.15772(2020).

3. The Connection Between Popularity Bias, Calibration, and Fairness in Recommendation

4. Himan Abdollahpouri Masoud Mansoury Robin Burke Bamshad Mobasher and Edward Malthouse. 2021. User-centered Evaluation of Popularity Bias in Recommender Systems. arXiv preprint arXiv:2103.06364(2021). Himan Abdollahpouri Masoud Mansoury Robin Burke Bamshad Mobasher and Edward Malthouse. 2021. User-centered Evaluation of Popularity Bias in Recommender Systems. arXiv preprint arXiv:2103.06364(2021).

5. Lada  A Adamic , Bernardo  A Huberman , AL Barabási , R Albert , H Jeong , and G Bianconi . 2000. Power-law distribution of the world wide web. science 287, 5461 ( 2000 ), 2115–2115. Lada A Adamic, Bernardo A Huberman, AL Barabási, R Albert, H Jeong, and G Bianconi. 2000. Power-law distribution of the world wide web. science 287, 5461 (2000), 2115–2115.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FAER: Fairness-Aware Event-Participant Recommendation in Event-Based Social Networks;IEEE Transactions on Big Data;2024-10

2. Enhancing machine learning efficacy and fairness in automated decision systems: an adversarial deep generative modeling with CoBS-TGAN approach in imbalanced and biased datasets;International Journal of System Assurance Engineering and Management;2024-07-29

3. Fairness Feedback Loops: Training on Synthetic Data Amplifies Bias;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

4. Item-side Fairness of Large Language Model-based Recommendation System;Proceedings of the ACM Web Conference 2024;2024-05-13

5. Intersectional Two-sided Fairness in Recommendation;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3