RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network

Author:

Kang Jian1,Zhu Yan2,Xia Yinglong2,Luo Jiebo3,Tong Hanghang1

Affiliation:

1. University of Illinois at Urbana-Champaign, USA

2. Facebook AI, USA

3. University of Rochester, USA and Facebook AI, USA

Funder

NSF (National Science Foundation)

Army Research Office

Defense Advanced Research Projects Agency

Publisher

ACM

Reference32 articles.

1. Chirag Agarwal Himabindu Lakkaraju and Marinka Zitnik. 2021. Towards a Unified Framework for Fair and Stable Graph Representation Learning. arXiv preprint arXiv:2102.13186(2021). Chirag Agarwal Himabindu Lakkaraju and Marinka Zitnik. 2021. Towards a Unified Framework for Fair and Stable Graph Representation Learning. arXiv preprint arXiv:2102.13186(2021).

2. James Atwood and Don Towsley. 2016. Diffusion-Convolutional Neural Networks. In Advances in Neural Information Processing Systems. 1993–2001. James Atwood and Don Towsley. 2016. Diffusion-Convolutional Neural Networks. In Advances in Neural Information Processing Systems. 1993–2001.

3. Avishek Bose and William Hamilton . 2019 . Compositional Fairness Constraints for Graph Embeddings. In International Conference on Machine Learning. 715–724 . Avishek Bose and William Hamilton. 2019. Compositional Fairness Constraints for Graph Embeddings. In International Conference on Machine Learning. 715–724.

4. Joan Bruna Wojciech Zaremba Arthur Szlam and Yann LeCun. 2013. Spectral Networks and Locally Connected Networks on Graphs. arXiv preprint arXiv:1312.6203(2013). Joan Bruna Wojciech Zaremba Arthur Szlam and Yann LeCun. 2013. Spectral Networks and Locally Connected Networks on Graphs. arXiv preprint arXiv:1312.6203(2013).

5. Maarten Buyl and Tijl De Bie . 2020 . DeBayes: A Bayesian Method for Debiasing Network Embeddings. In International Conference on Machine Learning. 1220–1229 . Maarten Buyl and Tijl De Bie. 2020. DeBayes: A Bayesian Method for Debiasing Network Embeddings. In International Conference on Machine Learning. 1220–1229.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FUGNN: Harmonizing Fairness and Utility in Graph Neural Networks;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. PyGDebias: A Python Library for Debiasing in Graph Learning;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

3. TrustLOG: The Second Workshop on Trustworthy Learning on Graphs;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

4. Fairness-Aware Graph Neural Networks: A Survey;ACM Transactions on Knowledge Discovery from Data;2024-04-12

5. Trustworthy Graph Neural Networks: Aspects, Methods, and Trends;Proceedings of the IEEE;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3