Chinese EmoBank: Building Valence-Arousal Resources for Dimensional Sentiment Analysis

Author:

Lee Lung-Hao1,Li Jian-Hong1,Yu Liang-Chih2ORCID

Affiliation:

1. National Central University, Taoyuan City, Taiwan

2. National Central University Yuan Ze University, Taoyuan City, Taiwan

Abstract

An increasing amount of research has recently focused on dimensional sentiment analysis that represents affective states as continuous numerical values on multiple dimensions, such as valence-arousal (VA) space. Compared to the categorical approach that represents affective states as distinct classes (e.g., positive and negative), the dimensional approach can provide more fine-grained (real-valued) sentiment analysis. However, dimensional sentiment resources with valence-arousal ratings are very rare, especially for the Chinese language. Therefore, this study aims to: (1) Build a Chinese valence-arousal resource called Chinese EmoBank, the first Chinese dimensional sentiment resource featuring various levels of text granularity including 5,512 single words, 2,998 multi-word phrases, 2,582 single sentences, and 2,969 multi-sentence texts. The valence-arousal ratings are annotated by crowdsourcing based on the Self-Assessment Manikin (SAM) rating scale. A corpus cleanup procedure is then performed to improve annotation quality by removing outlier ratings and improper texts. (2) Evaluate the proposed resource using different categories of classifiers such as lexicon-based, regression-based, and neural-network-based methods, and comparing their performance to a similar evaluation of an English dimensional sentiment resource.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference57 articles.

1. INESC-ID: A Regression Model for Large Scale Twitter Sentiment Lexicon Induction

2. S. Baccianella, A. Esuli, and F. Sebastiani. 2010. SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC’10). 2200–2204.

3. Enriching Word Vectors with Subword Information

4. Measuring emotion: The self-assessment manikin and the semantic differential

5. M. M. Bradley and P. J. Lang. 1999. Affective norms for English words (ANEW): Instruction manual and affective ratings. Technical Report C-1, University of Florida, Gainesville, FL.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3