Speculative Symbolic Graph Execution of Imperative Deep Learning Programs

Author:

Jeong Eunji1,Cho Sungwoo1,Yu Gyeong-In1,Jeong Joo Seong1,Shin Dong-Jin1,Kim Taebum1,Chun Byung-Gon1

Affiliation:

1. Seoul National University, Seoul, South Korea

Abstract

The rapid evolution of deep neural networks is demanding deep learning (DL) frameworks not only to satisfy the requirement of quickly executing large computations, but also to support straightforward programming models for quickly implementing and experimenting with complex network structures. However, existing frameworks fail to excel in both departments simultaneously, leading to diverged efforts for optimizing performance and improving usability. This paper presents JANUS, a system that combines the advantages from both sides by transparently converting an imperative DL program written in Python, a de-facto scripting language for DL, into an efficiently executable symbolic dataflow graph. JANUS can convert various dynamic features of Python, including dynamic control flow, dynamic types, and impure functions, into elements of a symbolic dataflow graph. Our experiments show that JANUS can achieve fast DL training by exploiting the techniques imposed by symbolic graph-based DL frameworks, while maintaining the simple and flexible programmability of imperative DL frameworks at the same time.

Publisher

Association for Computing Machinery (ACM)

Reference36 articles.

1. Martín Abadi et al. 2016. TensorFlow: A System for Large-scale Machine Learning. In OSDI. Martín Abadi et al. 2016. TensorFlow: A System for Large-scale Machine Learning. In OSDI.

2. Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. CoRR abs/1606.01540 (2016). arXiv:1606.01540 http://arxiv.org/abs/1606.01540 Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. CoRR abs/1606.01540 (2016). arXiv:1606.01540 http://arxiv.org/abs/1606.01540

3. Ian Goodfellow Jean Pouget-Abadie Mehdi Mirza Bing Xu David Warde- Farley Sherjil Ozair Aaron Courville and Yoshua Bengio. 2014. Generative Adversarial Nets. In NIPS. Ian Goodfellow Jean Pouget-Abadie Mehdi Mirza Bing Xu David Warde- Farley Sherjil Ozair Aaron Courville and Yoshua Bengio. 2014. Generative Adversarial Nets. In NIPS.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Graph Execution;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

2. Torchy: A Tracing JIT Compiler for PyTorch;Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler Construction;2023-02-17

3. Handling Iterations in Distributed Dataflow Systems;ACM Computing Surveys;2022-12-31

4. A Reverse Modification Method for Binary Code and Data;Sensors;2022-10-11

5. Challenges in migrating imperative deep learning programs to graph execution;Proceedings of the 19th International Conference on Mining Software Repositories;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3