NHP: Neural Hypergraph Link Prediction
Author:
Affiliation:
1. Indian Institute of Science, Bangalore, India
2. Columbia University, New York, NY, USA
3. Facebook AI, London, United Kingdom
4. LinkedIn, Bangalore, India
Funder
Ministry of Human Resource Development
SERB Award
Pratiksha Trust Young Investigator Award
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3340531.3411870
Reference44 articles.
1. Devanshu Arya and Marcel Worring. 2018. Exploiting Relational Information in Social Networks Using Geometric Deep Learning on Hypergraphs. In ICMR. Devanshu Arya and Marcel Worring. 2018. Exploiting Relational Information in Social Networks Using Geometric Deep Learning on Hypergraphs. In ICMR.
2. Haoli Bai Zhuangbin Chen Michael R. Lyu Irwin King and Zenglin Xu. 2018. Neural Relational Topic Models for Scientific Article Analysis. In CIKM. Haoli Bai Zhuangbin Chen Michael R. Lyu Irwin King and Zenglin Xu. 2018. Neural Relational Topic Models for Scientific Article Analysis. In CIKM.
3. Peter W. Battaglia Jessica B. Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vin'i cius Flores Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner cC aglar Gü lcc ehre Francis Song Andrew J. Ballard Justin Gilmer George E. Dahl Ashish Vaswani Kelsey Allen Charles Nash Victoria Langston Chris Dyer Nicolas Heess Daan Wierstra Pushmeet Kohli Matthew Botvinick Oriol Vinyals Yujia Li and Razvan Pascanu. 2018. Relational inductive biases deep learning and graph networks. CoRR arXiv:1806.01261 (2018). Peter W. Battaglia Jessica B. Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vin'i cius Flores Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner cC aglar Gü lcc ehre Francis Song Andrew J. Ballard Justin Gilmer George E. Dahl Ashish Vaswani Kelsey Allen Charles Nash Victoria Langston Chris Dyer Nicolas Heess Daan Wierstra Pushmeet Kohli Matthew Botvinick Oriol Vinyals Yujia Li and Razvan Pascanu. 2018. Relational inductive biases deep learning and graph networks. CoRR arXiv:1806.01261 (2018).
4. Michael M. Bronstein Joan Bruna Yann LeCun Arthur Szlam and Pierre Vandergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Process. Mag. (2017). Michael M. Bronstein Joan Bruna Yann LeCun Arthur Szlam and Pierre Vandergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Process. Mag. (2017).
Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hypergraph Computation;Engineering;2024-09
2. A dual-scale fused hypergraph convolution-based hyperedge prediction model for predicting missing reactions in genome-scale metabolic networks;Briefings in Bioinformatics;2024-07-25
3. Heterogeneous hypergraph learning for literature retrieval based on citation intents;Scientometrics;2024-06-21
4. AHD-SLE: Anomalous Hyperedge Detection on Hypergraph Symmetric Line Expansion;Axioms;2024-06-07
5. BERT4FCA: A method for bipartite link prediction using formal concept analysis and BERT;PLOS ONE;2024-06-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3