Energy-efficient Application Resource Scheduling using Machine Learning Classifiers

Author:

Imes Connor1,Hofmeyr Steven2,Hoffmann Henry1

Affiliation:

1. University of Chicago

2. Lawrence Berkeley National Laboratory

Funder

National Science Foundation

U.S. Department of Energy

Defense Advanced Research Projects Agency

Publisher

ACM

Reference52 articles.

1. Bilge Acun Phil Miller and Laxmikant V. Kale. 2016. Variation Among Processors Under Turbo Boost in HPC Systems. In ICS. 10.1145/2925426.2926289 Bilge Acun Phil Miller and Laxmikant V. Kale. 2016. Variation Among Processors Under Turbo Boost in HPC Systems. In ICS. 10.1145/2925426.2926289

2. Claudia Alvarado Dan Tamir and Apan Qasem. 2015. Realizing Energy-efficient Thread Affinity Configurations with Supervised Learning. In IGSC. 10.1109/IGCC.2015.7393691 Claudia Alvarado Dan Tamir and Apan Qasem. 2015. Realizing Energy-efficient Thread Affinity Configurations with Supervised Learning. In IGSC. 10.1109/IGCC.2015.7393691

3. D. H. Bailey E. Barszcz J. T. Barton D. S. Browning R. L. Carter L. Dagum R. A. Fatoohi P. O. Frederickson T. A. Lasinski R. S. Schreiber H. D. Simon V. Venkatakrishnan and S. K. Weeratunga. 1991. The NAS Parallel Benchmarks-Summary and Preliminary Results. In SC. 10.1145/125826.125925 D. H. Bailey E. Barszcz J. T. Barton D. S. Browning R. L. Carter L. Dagum R. A. Fatoohi P. O. Frederickson T. A. Lasinski R. S. Schreiber H. D. Simon V. Venkatakrishnan and S. K. Weeratunga. 1991. The NAS Parallel Benchmarks-Summary and Preliminary Results. In SC. 10.1145/125826.125925

4. Michael Berry Thomas E. Potok Prasanna Balaprakash Henry Hoffmann Raju Vatsavai Prabhat and Robinson Pino. 2015. Machine Learning and Understanding for Intelligent Extreme Scale Scientific Computing and Discovery. (2015). Michael Berry Thomas E. Potok Prasanna Balaprakash Henry Hoffmann Raju Vatsavai Prabhat and Robinson Pino. 2015. Machine Learning and Understanding for Intelligent Extreme Scale Scientific Computing and Discovery. (2015).

5. Dimitrios Chasapis Marc Casas Miquel Moretó Martin Schulz Eduard Ayguadé Jesus Labarta and Mateo Valero. 2016. Runtime-Guided Mitigation of Manufacturing Variability in Power-Constrained Multi-Socket NUMA Nodes. In ICS. 10.1145/2925426.2926279 Dimitrios Chasapis Marc Casas Miquel Moretó Martin Schulz Eduard Ayguadé Jesus Labarta and Mateo Valero. 2016. Runtime-Guided Mitigation of Manufacturing Variability in Power-Constrained Multi-Socket NUMA Nodes. In ICS. 10.1145/2925426.2926279

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning algorithms for temperature prediction in two-phase immersion-cooled data centres;International Journal of Numerical Methods for Heat & Fluid Flow;2024-03-29

2. Planter: Rapid Prototyping of In-Network Machine Learning Inference;ACM SIGCOMM Computer Communication Review;2024-01-30

3. Fusion Orchestration Guidelines (FOG) for Collaborative Computing and Network Data Fusion;NAECON 2023 - IEEE National Aerospace and Electronics Conference;2023-08-28

4. Energy-Aware Scheduling for High-Performance Computing Systems: A Survey;Energies;2023-01-12

5. Energy-Aware Non-Preemptive Task Scheduling With Deadline Constraint in DVFS-Enabled Heterogeneous Clusters;IEEE Transactions on Parallel and Distributed Systems;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3