1. AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias
2. Richard Berk Hoda Heidari Shahin Jabbari Matthew Joseph Michael Kearns Jamie Morgenstern Seth Neel and Aaron Roth. 2017. A convex framework for fair regression. arXiv preprint arXiv:1706.02409 (2017). Richard Berk Hoda Heidari Shahin Jabbari Matthew Joseph Michael Kearns Jamie Morgenstern Seth Neel and Aaron Roth. 2017. A convex framework for fair regression. arXiv preprint arXiv:1706.02409 (2017).
3. Alex Beutel Jilin Chen Zhe Zhao and Ed H Chi. 2017. Data decisions and theoretical implications when adversarially learning fair representations. arXiv preprint arXiv:1707.00075 (2017). Alex Beutel Jilin Chen Zhe Zhao and Ed H Chi. 2017. Data decisions and theoretical implications when adversarially learning fair representations. arXiv preprint arXiv:1707.00075 (2017).
4. Serdar cC iftcc i Ahmet Oug uz Akyüz and Touradj Ebrahimi. 2017. A reliable and reversible image privacy protection based on false colors. IEEE transactions on Multimedia Vol. 20 1 (2017) 68--81. Serdar cC iftcc i Ahmet Oug uz Akyüz and Touradj Ebrahimi. 2017. A reliable and reversible image privacy protection based on false colors. IEEE transactions on Multimedia Vol. 20 1 (2017) 68--81.