CRSSC: Salvage Reusable Samples from Noisy Data for Robust Learning
Author:
Affiliation:
1. Nanjing University of Science and Technology, Nanjing, China
2. Alibaba Group, Hangzhou, China
3. AnyVision, Belfast, United Kingdom
4. University of Technology Sydney, Sydney, Australia
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3394171.3413978
Reference64 articles.
1. Haw-Shiuan Chang Erik Learned-Miller and Andrew McCallum. 2017a. Active bias: Training more accurate neural networks by emphasizing high variance samples. In Advances in Neural Information Processing Systems. 1002--1012. Haw-Shiuan Chang Erik Learned-Miller and Andrew McCallum. 2017a. Active bias: Training more accurate neural networks by emphasizing high variance samples. In Advances in Neural Information Processing Systems. 1002--1012.
2. Haw-Shiuan Chang Erik Learned-Miller and Andrew McCallum. 2017b. Active bias: Training more accurate neural networks by emphasizing high variance samples. In Advances in Neural Information Processing Systems. 1002--1012. Haw-Shiuan Chang Erik Learned-Miller and Andrew McCallum. 2017b. Active bias: Training more accurate neural networks by emphasizing high variance samples. In Advances in Neural Information Processing Systems. 1002--1012.
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. HSALC: hard sample aware label correction for medical image classification;Multimedia Tools and Applications;2024-09-02
2. Visual Out-of-Distribution Detection in Open-Set Noisy Environments;International Journal of Computer Vision;2024-06-16
3. Group benefits instance for data purification;Computers and Electrical Engineering;2024-05
4. Data reweighting net for web fine-grained image classification;Multimedia Tools and Applications;2024-03-02
5. Learning With Imbalanced Noisy Data by Preventing Bias in Sample Selection;IEEE Transactions on Multimedia;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3