NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining

Author:

Wu Youxi1,Luo Lanfang2,Li Yan3,Guo Lei4,Fournier-Viger Philippe5,Zhu Xingquan6,Wu Xindong7

Affiliation:

1. School of Artificial Intelligence, Hebei University of Technology and Hebei Key Laboratory of Big Data Computing, Tianjin, China

2. School of Artificial Intelligence, Hebei University of Technology, Tianjin, China

3. School of Economics and Management, Hebei University of Technology, Tianjin, China

4. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China

5. School of Humanities and Social Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen, China

6. Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, FL

7. Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education and Mininglamp Academy of Sciences, Mininglamp Technology, Beijing, China

Abstract

Nonoverlapping sequential pattern mining is an important type of sequential pattern mining (SPM) with gap constraints, which not only can reveal interesting patterns to users but also can effectively reduce the search space using the Apriori (anti-monotonicity) property. However, the existing algorithms do not focus on attributes of interest to users, meaning that existing methods may discover many frequent patterns that are redundant. To solve this problem, this article proposes a task called nonoverlapping three-way sequential pattern (NTP) mining, where attributes are categorized according to three levels of interest: strong, medium, and weak interest. NTP mining can effectively avoid mining redundant patterns since the NTPs are composed of strong and medium interest items. Moreover, NTPs can avoid serious deviations (the occurrence is significantly different from its pattern) since gap constraints cannot match with strong interest patterns. To mine NTPs, an effective algorithm is put forward, called NTP-Miner, which applies two main steps: support (frequency occurrence) calculation and candidate pattern generation. To calculate the support of an NTP, depth-first and backtracking strategies are adopted, which do not require creating a whole Nettree structure, meaning that many redundant nodes and parent–child relationships do not need to be created. Hence, time and space efficiency is improved. To generate candidate patterns while reducing their number, NTP-Miner employs a pattern join strategy and only mines patterns of strong and medium interest. Experimental results on stock market and protein datasets show that NTP-Miner not only is more efficient than other competitive approaches but can also help users find more valuable patterns. More importantly, NTP mining has achieved better performance than other competitive methods in clustering tasks. Algorithms and data are available at: https://github.com/wuc567/Pattern-Mining/tree/master/NTP-Miner .

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Science Foundation

Natural Science Foundation of Hebei Province, China

Graduate Student Innovation Program of Hebei Province

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3