Efficient automated repair of high floating-point errors in numerical libraries

Author:

Yi Xin1,Chen Liqian1,Mao Xiaoguang1,Ji Tao1

Affiliation:

1. National University of Defense Technology, China

Abstract

Floating point computation is by nature inexact, and numerical libraries that intensively involve floating-point computations may encounter high floating-point errors. Due to the wide use of numerical libraries, it is highly desired to reduce high floating-point errors in them. Using higher precision will degrade performance and may also introduce extra errors for certain precision-specific operations in numerical libraries. Using mathematical rewriting that mostly focuses on rearranging floating-point expressions or taking Taylor expansions may not fit for reducing high floating-point errors evoked by ill-conditioned problems that are in the nature of the mathematical feature of many numerical programs in numerical libraries. In this paper, we propose a novel approach for efficient automated repair of high floating-point errors in numerical libraries. Our main idea is to make use of the mathematical feature of a numerical program for detecting and reducing high floating-point errors. The key components include a detecting method based on two algorithms for detecting high floating-point errors and a repair method for deriving an approximation of a mathematical function to generate patch to satisfy a given repair criterion. We implement our approach by constructing a new tool called AutoRNP. Our experiments are conducted on 20 numerical programs in GNU Scientific Library (GSL). Experimental results show that our approach can efficiently repair (with 100% accuracy over all randomly sampled points) high floating-point errors for 19 of the 20 numerical programs.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rigorous Floating-Point Round-Off Error Analysis in PRECiSA 4.0;Lecture Notes in Computer Science;2024-09-13

2. Arfa: An Agile Regime-Based Floating-Point Optimization Approach for Rounding Errors;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

3. Parallel Optimization for Accelerating the Generation of Correctly Rounded Elementary Functions;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

4. Input Range Generation for Compiler-Induced Numerical Inconsistencies;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30

5. When debugging encounters artificial intelligence: state of the art and open challenges;Science China Information Sciences;2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3