Affiliation:
1. National University of Defense Technology, China
Abstract
Floating point computation is by nature inexact, and numerical libraries that intensively involve floating-point computations may encounter high floating-point errors. Due to the wide use of numerical libraries, it is highly desired to reduce high floating-point errors in them. Using higher precision will degrade performance and may also introduce extra errors for certain precision-specific operations in numerical libraries. Using mathematical rewriting that mostly focuses on rearranging floating-point expressions or taking Taylor expansions may not fit for reducing high floating-point errors evoked by ill-conditioned problems that are in the nature of the mathematical feature of many numerical programs in numerical libraries.
In this paper, we propose a novel approach for efficient automated repair of high floating-point errors in numerical libraries. Our main idea is to make use of the mathematical feature of a numerical program for detecting and reducing high floating-point errors. The key components include a detecting method based on two algorithms for detecting high floating-point errors and a repair method for deriving an approximation of a mathematical function to generate patch to satisfy a given repair criterion. We implement our approach by constructing a new tool called AutoRNP. Our experiments are conducted on 20 numerical programs in GNU Scientific Library (GSL). Experimental results show that our approach can efficiently repair (with 100% accuracy over all randomly sampled points) high floating-point errors for 19 of the 20 numerical programs.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,Software
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献