Learning Reliable Neural Networks with Distributed Architecture Representations

Author:

Li Yinqiao1ORCID,Cao Runzhe1ORCID,He Qiaozhi2ORCID,Xiao Tong3ORCID,Zhu Jingbo3ORCID

Affiliation:

1. School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China

2. Tencent, China

3. School of Computer Science and Engineering, Northeastern University and also NiuTrans Research, Shenyang, Liaoning, China

Abstract

Neural architecture search (NAS) has shown the strong performance of learning neural models automatically in recent years. But most NAS systems are unreliable due to the architecture gap brought by discrete representations of atomic architectures. In this article, we improve the performance and robustness of NAS via narrowing the gap between architecture representations. More specifically, we apply a general contraction mapping to model neural networks with distributed representations (Neural Architecture Search with Distributed Architecture Representations (ArchDAR)). Moreover, for a better search result, we present a joint learning approach to integrating distributed representations with advanced architecture search methods. We implement our ArchDAR in a differentiable architecture search model and test learned architectures on the language modeling task. On the Penn Treebank data, it outperforms a strong baseline significantly by 1.8 perplexity scores. Also, the search process with distributed representations is more stable, which yields a faster structural convergence when it works with the differentiable architecture search model.

Funder

National Science Foundation of China

National Key R&D Project of China

China HTRD Center

Yunnan Provincial Major Science and Technology Special Plan Projects

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference46 articles.

1. Stability Issues in RNN Architectures

2. An evolutionary algorithm that constructs recurrent neural networks

3. Training Deeper Neural Machine Translation Models with Transparent Attention

4. Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. 2018. Understanding and simplifying one-shot architecture search. In Proceedings of the 35th International Conference on Machine Learning (ICML’18), Proceedings of Machine Learning Research, Jennifer G. Dy and Andreas Krause (Eds.), Vol. 80. PMLR, 549–558.

5. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems (NeurIPS’20), Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3