Jointly Modeling Label and Feature Heterogeneity in Medical Informatics
Author:
Affiliation:
1. Arizona State University, Tempe, AZ
2. Yahoo! Inc., Sunnyvale, CA
3. Eli Lilly and Company, Indianapolis, IN
4. University of Michigan, Ann Arbor, MI
5. Stevens Institute of Technology, Hoboken, NJ
Abstract
Funder
National Science Foundation
U.S. Army Research Laboratory
Defense Advanced Research Projects Agency
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science
Link
https://dl.acm.org/doi/pdf/10.1145/2768831
Reference58 articles.
1. Steven P. Abney. 2002. Bootstrapping. In ACL. 360--367. 10.3115/1073083.1073143 Steven P. Abney. 2002. Bootstrapping. In ACL. 360--367. 10.3115/1073083.1073143
2. Andreas Argyriou Theodoros Evgeniou and Massimiliano Pontil. 2006. Multi-task feature learning. In NIPS. 41--48. Andreas Argyriou Theodoros Evgeniou and Massimiliano Pontil. 2006. Multi-task feature learning. In NIPS. 41--48.
3. Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In COLT. 92--100. 10.1145/279943.279962 Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In COLT. 92--100. 10.1145/279943.279962
4. Xiaojun Chang Feiping Nie Yi Yang and Heng Huang. 2014. A convex formulation for semi-supervised multi-label feature selection. In AAAI. 1171--1177. Xiaojun Chang Feiping Nie Yi Yang and Heng Huang. 2014. A convex formulation for semi-supervised multi-label feature selection. In AAAI. 1171--1177.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Collaboration based multi-modal multi-label learning;Applied Intelligence;2022-03-04
2. Multi-Modal Multi-Instance Multi-Label Learning with Graph Convolutional Network;2021 International Joint Conference on Neural Networks (IJCNN);2021-07-18
3. Relation-Aware Alignment Attention Network for Multi-view Multi-label Learning;Database Systems for Advanced Applications;2021
4. Multi-view Multi-label Learning with Dual-Attention Networks for Stroke Screen;2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2020-12-16
5. Common and Discriminative Semantic Pursuit for Multi-Modal Multi-Label Learning;FRONT ARTIF INTEL AP;2020
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3