Affiliation:
1. University of Texas at Austin, Austin, TX
Abstract
Many distributed applications can make use of large
background transfers
--transfers of data that humans are not waiting for--to improve availability, reliability, latency or consistency. However, given the rapid fluctuations of available network bandwidth and changing resource costs due to technology trends, hand tuning the aggressiveness of background transfers risks (1) complicating applications, (2) being too aggressive and interfering with other applications, and (3) being too timid and not gaining the benefits of background transfers. Our goal is for the operating system to manage network resources in order to provide a simple abstraction of near zero-cost background transfers. Our system, TCP Nice, can provably bound the interference inflicted by background flows on foreground flows in a restricted network model. And our microbenchmarks and case study applications suggest that in practice it interferes little with foreground flows, reaps a large fraction of spare network bandwidth, and simplifies application construction and deployment. For example, in our prefetching case study application, aggressive prefetching improves demand performance by a factor of three when Nice manages resources; but the same prefetching hurts demand performance by a factor of six under standard network congestion control.
Publisher
Association for Computing Machinery (ACM)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献