Fine-grained network time synchronization using reference broadcasts

Author:

Elson Jeremy1,Girod Lewis1,Estrin Deborah1

Affiliation:

1. University of California, Los Angeles

Abstract

Recent advances in miniaturization and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low-power sensors and actuators. Time synchronization is critical in sensor networks for diverse purposes including sensor data fusion, coordinated actuation, and power-efficient duty cycling. Though the clock accuracy and precision requirements are often stricter than in traditional distributed systems, strict energy constraints limit the resources available to meet these goals.We present Reference-Broadcast Synchronization , a scheme in which nodes send reference beacons to their neighbors using physical-layer broadcasts. A reference broadcast does not contain an explicit timestamp; instead, receivers use its arrival time as a point of reference for comparing their clocks. In this paper, we use measurements from two wireless implementations to show that removing the sender's nondeterminism from the critical path in this way produces high-precision clock agreement (1.85 ± 1.28μsec, using off-the-shelf 802.11 wireless Ethernet), while using minimal energy. We also describe a novel algorithm that uses this same broadcast property to federate clocks across broadcast domains with a slow decay in precision (3.68 ± 2.57μsec after 4 hops). RBS can be used without external references, forming a precise relative timescale, or can maintain microsecond-level synchronization to an external timescale such as UTC. We show a significant improvement over the Network Time Protocol (NTP) under similar conditions.

Publisher

Association for Computing Machinery (ACM)

Reference32 articles.

1. Wireless sensor networks: a survey

2. services of the U.S. National Bureau of Standards and some alternatives for future improvement;Beehler R.E.;Journal of Electronics and Telecommunications Engineers,1981

3. Habitat monitoring

4. Probabilistic clock synchronization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3