ATCN: Resource-efficient Processing of Time Series on Edge

Author:

Baharani Mohammadreza1,Tabkhi Hamed1

Affiliation:

1. UNC Charlotte, Charlotte, NC, USA

Abstract

This article presents a scalable deep learning model called Agile Temporal Convolutional Network (ATCN) for highly accurate fast classification and time series prediction in resource-constrained embedded systems. ATCN is a family of compact networks with formalized hyperparameters that enable application-specific adjustments to be made to the model architecture. It is primarily designed for embedded edge devices with very limited performance and memory, such as wearable biomedical devices and real-time reliability monitoring systems. ATCN makes fundamental improvements over the mainstream temporal convolutional neural networks, including residual connections to increase the network depth and accuracy and the incorporation of separable depth-wise convolution to reduce the computational complexity of the model. As part of the present work, two ATCN families, namely T0 and T1, are also presented and evaluated on different ranges of embedded processors: Cortex-M7 and Cortex-A57 processors. An evaluation of the ATCN models against the best-in-class InceptionTime and MiniRocket shows that ATCN almost maintains accuracy while improving the execution time on a broad range of embedded and cyber-physical applications with demand for real-time processing on the embedded edge. At the same time, in contrast to existing solutions, ATCN is the first time series classifier based on deep learning that can be run bare-metal on embedded microcontrollers (Cortex-M7) with limited computational performance and memory capacity while delivering state-of-the-art accuracy.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference45 articles.

1. Real-Time Deep Learning at the Edge for Scalable Reliability Modeling of Si-MOSFET Power Electronics Converters

2. DeepDive

3. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling;Bai Shaojie;CoRR,2018

4. Scalable Reliability Monitoring of GaN Power Converter Through Recurrent Neural Networks

5. Optimizing temporal convolutional network inference on FPGA-based accelerators;Carreras M.;IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3