A Proof of the CSP Dichotomy Conjecture

Author:

Zhuk Dmitriy1

Affiliation:

1. Lomonosov Moscow State University, Moscow, Russia

Abstract

Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NP-complete in general, but certain restrictions on the form of the constraints can ensure tractability. The standard way to parameterize interesting subclasses of the constraint satisfaction problem is via finite constraint languages. The main problem is to classify those subclasses that are solvable in polynomial time and those that are NP-complete. It was conjectured that if a constraint language has a weak near-unanimity polymorphism then the corresponding constraint satisfaction problem is tractable; otherwise, it is NP-complete. In the article, we present an algorithm that solves Constraint Satisfaction Problem in polynomial time for constraint languages having a weak near unanimity polymorphism, which proves the remaining part of the conjecture. 1

Funder

Russian Foundation for Basic Research

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixing is hard for triangle-free reflexive graphs;European Journal of Combinatorics;2024-02

2. Optimal Polynomial-time Compression for Boolean Max CSP;ACM Transactions on Computation Theory;2023-09-26

3. Towards A Dichotomy for the List Switch Homomorphism Prob- lem for Signed Graphs;KYUNGPOOK MATH J;2023

4. Computing a Partition Function of a Generalized Pattern-Based Energy over a Semiring;Theory of Computing Systems;2023-07-10

5. Boolean symmetric vs. functional PCSP dichotomy;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3