Tight bounds and a fast FPT algorithm for directed Max-Leaf Spanning Tree

Author:

Bonsma Paul1,Dorn Frederic2

Affiliation:

1. Technische Universität Berlin, Germany

2. Humboldt-Universität zu Berlin, Germany

Abstract

An out-tree T of a directed graph D is a rooted tree subgraph with all arcs directed outwards from the root. An out-branching is a spanning out-tree. By ℓ( D ) and ℓ s ( D ), we denote the maximum number of leaves over all out-trees and out-branchings of D , respectively. We give fixed parameter tractable algorithms for deciding whether ℓ s ( D ) ≥ k and whether ℓ( D ) ≥ k for a digraph D on n vertices, both with time complexity 2 O ( k log k ) · n O (1) . This answers an open question whether the problem for out-branchings is in FPT, and improves on the previous complexity of 2 O ( k log 2 k ) · n O (1) in the case of out-trees. To obtain the complexity bound in the case of out-branchings, we prove that when all arcs of D are part of at least one out-branching, ℓ s ( D ) ≥ ℓ( D )/3. The second bound we prove in this article states that for strongly connected digraphs D with minimum in-degree 3, ℓ s ( D ) ≥ Θ(√ n ), where previously ℓ s ( D ) ≥ Θ(3√ n ) was the best known bound. This bound is tight, and also holds for the larger class of digraphs with minimum in-degree 3 in which every arc is part of at least one out-branching.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3