Automated generation of polyhedral process networks from affine nested-loop programs with dynamic loop bounds

Author:

Nadezhkin Dmitry1,Nikolov Hristo1,Stefanov Todor1

Affiliation:

1. Leiden Institute of Advanced Computer Science, Leiden, The Netherlands

Abstract

The Process Networks (PNs) is a suitable parallel model of computation (MoC) used to specify embedded streaming applications in a parallel form facilitating the efficient mapping onto embedded parallel execution platforms. Unfortunately, specifying an application using a parallel MoC is a very difficult and highly error-prone task. To overcome the associated difficulties, we have developed the pn compiler, which derives specific Polyhedral Process Networks (PPN) parallel specifications from sequential static affine nested loop programs (SANLPs). However, there are many applications, for example, multimedia applications (MPEG coders/decoders, smart cameras, etc.) that have adaptive and dynamic behavior which cannot be expressed as SANLPs. Therefore, in order to handle dynamic multimedia applications, in this article we address the important question whether we can relax some of the restrictions of the SANLPs while keeping the ability to perform compile-time analysis and to derive PPNs. Achieving this would significantly extend the range of applications that can be parallelized in an automated way. The main contribution of this article is a first approach for automated translation of affine nested loop programs with dynamic loop bounds into input-output equivalent Polyhedral Process Networks. In addition, we present a method for analyzing the execution overhead introduced in the PPNs derived from programs with dynamic loop bounds. The presented automated translation approach has been evaluated by deriving a PPN parallel specification from a real-life application called Low Speed Obstacle Detection (LSOD) used in the smart cameras domain. By executing the derived PPN, we have obtained results which indicate that the approach we present in this article facilitates efficient parallel implementations of sequential nested loop programs with dynamic loop bounds. That is, our approach reveals the possible parallelism available in such applications, which allows for the utilization of multiple cores in an efficient way.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Impact of Affine Loop Transformations in Qubit Allocation;ACM Transactions on Quantum Computing;2021-09-30

2. Polyhedral Compilation for Multi-dimensional Stream Processing;ACM Transactions on Architecture and Code Optimization;2019-09-30

3. Modeling Nested for Loops with Explicit Parallelism in Synchronous DataFlow Graphs;Lecture Notes in Computer Science;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3