Affiliation:
1. Waseda University, Tokyo, Japan
2. Hamburg University of Technology and Waseda University, Tokyo, Japan
Abstract
We present a pair arithmetic for the four basic operations and square root. It can be regarded as a simplified, more-efficient double-double arithmetic. The central assumption on the underlying arithmetic is the first standard model for error analysis for operations on a discrete set of real numbers. Neither do we require a floating-point grid nor a rounding to nearest property. Based on that, we define a relative rounding error unit u and prove rigorous error bounds for the computed result of an arbitrary arithmetic expression depending on u, the size of the expression, and possibly a condition measure. In the second part of this note, we extend the error analysis by examining requirements to ensure faithfully rounded outputs and apply our results to IEEE 754 standard conform floating-point systems. For a class of mathematical expressions, using an IEEE 754 standard conform arithmetic with base
β
, the result is proved to be faithfully rounded for up to 1 / √
β
u - 2 operations. Our findings cover a number of previously published algorithms to compute faithfully rounded results, among them Horner’s scheme, products, sums, dot products, or Euclidean norm. Beyond that, several other problems can be analyzed, such as polynomial interpolation, orientation problems, Householder transformations, or the smallest singular value of Hilbert matrices of large size.
Funder
Japan Science and Technology Agency
CREST
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献